Search results for "Sparse matrices"
showing 3 items of 3 documents
Circular law for sparse random regular digraphs
2020
Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices. We show that, as long as $d\to\infty$ with $n$, the empirical spectral distribution of appropriately rescaled matrix $A_n$ converges weakly in probability to the circular law. This result, together with an earlier work of Cook, completely settles the problem of weak convergence of the empirical distribution in directed $d$-regular setting with the degree tending to infinity. As a crucial element of our proof, we develop a technique of bounding intermediate singular values of $A_n$ based on studyi…
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint
2022
Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…
The smallest singular value of a shifted $d$-regular random square matrix
2017
We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let $$C_1<d< c n/\log ^2 n$$ and let $$\mathcal {M}_{n,d}$$ be the set of all $$n\times n$$ square matrices with 0 / 1 entries, such that each row and each column of every matrix in $$\mathcal {M}_{n,d}$$ has exactly d ones. Let M be a random matrix uniformly distributed on $$\mathcal {M}_{n,d}$$ . Then the smallest singular value $$s_{n} (M)$$ of M is greater than $$n^{-6}$$ with probability at least $$1-C_2\log ^2 d/\sqrt{d}$$ , where c, $$C_1$$ , and $$C_2$$ are absolute positive constants independent of any other parameter…